skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferland, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Near IR spectroscopic reverberation of Active Galactic Nuclei (AGN) potentially allows the infrared (IR) broad line region (BLR) to be reverberated alongside the disc and dust continua, while the spectra can also reveal details of dust astro-chemistry. Here, we describe results of a short pilot study (17 near-IR spectra over a 183 d period) for Mrk 509. The spectra give a luminosity-weighted dust radius of 〈Rd,lum〉 = 186 ± 4 light-days for blackbody (large grain dust), consistent with previous (photometric) reverberation campaigns, whereas carbon and silicate dust give much larger radii. We develop a method of calibrating spectral data in objects where the narrow lines are extended beyond the slit width. We demonstrate this by showing our resultant photometric band light curves are consistent with previous results, with a hot dust lag at >40 d in the K band, clearly different from the accretion disc response at <20 d in the z band. We place this limit of 40 d by demonstrating clearly that the modest variability that we do detect in the H and K band does not reverberate on time-scales of less than 40 d. We also extract the Pa β line light curve, and find a lag which is consistent with the optical BLR H β line of ∼70–90 d. This is important as direct imaging of the near-IR BLR is now possible in a few objects, so we need to understand its relation to the better studied optical BLR. 
    more » « less
  2. Abstract Here, we present our current updates to the gas-phase chemical reaction rates and molecular lines in the spectral synthesis codecloudy, and its implications in spectroscopic modeling of various astrophysical environments. We include energy levels, and radiative and collisional rates for HF, CF+, HC3N, ArH+, HCl, HCN, CN, CH, and CH2. Simultaneously, we expand our molecular network involving these molecules. For this purpose, we have added 561 new reactions and have updated the existing 165 molecular reaction rates involving these molecules. As a result,cloudynow predicts all the lines arising from these nine molecules. In addition, we also update H2–H2collisional data up to rotational levelsJ= 31 forv= 0. We demonstrate spectroscopic simulations of these molecules for a few astrophysical environments. Our existing model for globules in the Crab Nebula successfully predicts the observed column density of ArH+. Our model predicts a detectable amount of HeH+, OH+, and CH+for the Crab Nebula. We also model the interstellar medium toward HD185418, W31C, and NGC 253, and our predictions match with most of the observed column densities within the observed error bars. Very often molecular lines trace various physical conditions. Hence, this update will be very supportive for spectroscopic modeling of various astrophysical environments, particularly involving submillimeter and mid-infrared observations using the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope, respectively. 
    more » « less
  3. ABSTRACT Steadily accreting white dwarfs (WDs) are efficient sources of ionization and thus are able to create extended ionized nebulae in their vicinity. These nebulae represent ideal tools for the detection of accreting WDs, given that in most cases the source itself is faint. In this work, we combine radiation transfer simulations with known H- and He-accreting WD models, providing for the first time the ionization state and the emission-line spectra of the formed nebulae as a function of the WD mass, the accretion rate and the chemical composition of the accreted material. We find that the nebular optical line fluxes and radial extent vary strongly with the WD’s accretion properties, peaking in systems with WD masses of 0.8–1.2 $$\rm M_{\odot }$$. Projecting our results on so-called BPT diagnostic diagrams, we show that accreting WD nebulae possess characteristics distinct from those of H ii-like regions, while they have line ratios similar to those in galactic low-ionization emission-line regions. Finally, we compare our results with the relevant constraints imposed by the lack of ionized nebulae in the vicinity of supersoft X-ray sources (SSSs) and Type Ia supernova remnants – sources that are related to steadily accreting WDs. The large discrepancies uncovered by our comparison rule out any steadily accreting WD as a potential progenitor of the studied remnants and additionally require the ambient medium around the SSSs to be less dense than 0.2 $$\rm cm^{-3}$$. We discuss possible alternatives that could bridge the incompatibility between the theoretical expectations and relevant observations. 
    more » « less
  4. ABSTRACT The gamma-ray burst (GRB) afterglows provide a unique opportunity to study the interstellar medium (ISM) of star-forming galaxies at high-redshift. The GRB-DLAs (damped Lyman-α absorbers) contain a large neutral hydrogen column density, N(H i), and are observed against the GRB afterglow. A large fraction of GRB-DLAs show presence of molecular hydrogen (H2) which is an indicator of star-formation. Hence it is important to study those GRB-DLAs which have H2 lines to decipher and understand their physical conditions. The GRB-DLAs 121024A and 120815A, situated at redshift 2.30 and 2.36, respectively, are two such important H2-bearing GRB-DLAs. Besides H2, these two GRB-DLAs also show many metal lines. In this work we have carried out a detail numerical study on the H2 lines, as well as on those metal lines, in GRB-DLAs 121024A and 120815A self-consistently. We use the spectral synthesis code cloudy for this study. This modelling helps us to determine the underlying physical conditions which give rise to such lines and hence to understand these two GRB-DLAs in much more detail than any other previous investigation. We find that the hydrogen densities for these two H2-bearing DLAs are ≥60 cm−3. Moreover our study infers that the linear sizes are ≤17.7 pc for these two GRB-DLAs, and the mean gas temperatures averaged over the cloud thickness, are ≤140 K. Overall, we find that these two H2-bearing GRB-DLAs are denser, cooler, and smaller compared to those without H2. 
    more » « less
  5. Abstract Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments. 
    more » « less